
In many commercial, governmental, and scientific data 
banks, however, some of the relations are of quite high de- 
gree (a degree of 30 is not at all uncommon). Users should 
not normally be burdened with remembering the domain 
ordering of any relation (for example, the ordering supplier, 
then part, then project, then quantity in the relation supply). 
Accordingly, we propose that users deal, not with relations 
which are domain-ordered, but with relationships which are 
their domain-unordered counterparts.2 To accomplish this, 
domains must be uniquely identifiable at least within any 
given relation, without using position. Thus, where there 
are two or more identical domains, we require in each case 
that the domain name be qualified by a distinctive role 
name, which serves to identify the role played by that 
domain in the given relation. For example, in the relation 
component of Figure 2, the first domain part might be 
qualified by the role name sub, and the second by super, so 
that users could deal with the relationship component and 
its domains-sub.part super.part, quantity-without regard 
to any ordering between these domains. 

To sum up, it is proposed that most users should interact 
with a relational model of the data consisting of a collection 
of time-varying relationships (rather than relations). Each 
user need not know more about any relationship than its 
name together with the names of its domains (role quali- 
fied whenever necessary): Even this information might be 
offered in menu style by the system (subject to security 
and privacy constraints) upon request by the user. 

There are usually many alternative ways in which a re- 
lational model may be established for a data bank. In 
order to discuss a preferred way (or normal form), we 
must first introduce a few additional concepts (active 
domain, primary key, foreign key, nonsimple domain) 
and establish some links with terminology currently in use 
in information systems programming. In the remainder of 
this paper, we shall not bother to distinguish between re- 
lations and relationships except where it appears advan- 
tageous to be explicit. 

Consider an example of a data bank which includes rela- 
tions concerning parts, projects, and suppliers. One rela- 
tion called part is defined on the following domains: 

(1) part number 
(2) part name 
(3) part color 
(4) part weight 
(5) quantity on hand 
(6) quantity on order 

and possibly other domains as well. Each of these domains 
is, in effect, a pool of values, some or all of which may be 
represented in the data bank at any instant. While it is 
conceivable that, at some instant, all part colors are pres- 
ent, it is unlikely that all possible part weights, part 

2 In mathematical terms, a relationship is an equivalence class of 
those relations that are equivalent under permutation of domains 
(see Section 2.1.1). 
* Naturally, as with any data put into and retrieved from a com- 
puter system, the user will normally make far more effective use 
of the data if he is aware of its meaning. 

names, and part numbers are. We shall call the set of 
values represented at some instant the active domain at that 
instant. 

Normally, one domain (or combination of domains) of a 
given relation has values which uniquely identify each ele- 
ment (n-tuple) of that relation. Such a domain (or com- 
bination) is called a primary key. In the example above, 
part number would be a primary key, while part color 
would not be. A primary key is nonredundant if it is either 
a simple domain (not a combination) or a combination 
such that none of the participating simple domains is 
superfluous in uniquely identifying each element. A rela- 
tion may possess more than one nonredundant primary 
key. This would be the case in the example if different parts 
were always given distinct names. Whenever a relation 
has two or more nonredundant primary keys, one of them 
is arbitrarily selected and called the primary key of that re- 
lation. 

A common requirement is for elements of a relation to 
cross-reference other elements of the same relation or ele- 
ments of a different relation. Keys provide a user-oriented 
means (but not the only means) of expressing such cross- 
references. We shall call a domain (or domain combma- 
tion) of relation R a foreign key if it is not the primary key 
of R but its elements are values of the primary key of some 
relation S (the possibility that S and R are identical is not 
excluded). In the relation supply of Figure 1, the combina- 
tion of supplier, part, project is the primary key, while each 
of these three domains taken separately is a foreign key. 

In previous work there has been a strong tendency to 
treat the data in a data bank as consisting of two parts, one 
part consisting of entity descriptions (for example, descrip- 
tions of suppliers) and the other part consisting of rela- 
tions between the various entities or types of entities (for 
example, the supply relation). This distinction is difficult 
to maintain when one may have foreign keys in any rela- 
tion whatsoever. In the user’s relational model there ap- 
pears to be no advantage to making such a distinction 
(there may be some advantage, however, when one applies 
relational concepts to machine representations of the user’s 
set of relationships). 

So far, we have discussed examples of relations which are 
defined on simple domains-domains whose elements are 
atomic (nondecomposable) values. Nonatomic values can 
be discussed within the relational framework. Thus, some 
domains may have relations as elements. These relations 
may, in turn, be defined on nonsimple domains, and so on. 
For example, one of the domains on which the relation em- 
ployee is defined might be salary history. An element of the 
salary history domain is a binary relation defined on the do- 
main date and the domain salary. The salary history domain 
is the set of all such binary relations. At any instant of time 
there are as many instances of the salary history relation 
in the data bank as there are employees. In contrast, there 
is only one instance of the employee relation. 

The terms attribute and repeating group in present data 
base terminology are roughly analogous to simple domain 

380 Communications of the ACM Volume 13 / Number 6 / June, 1970 


