2009年 9月16日 「実践編-3 T字形 ER図の作成手順」 を読む >> 目次にもどる

 

 本編では、TMD (TM Diagram、T字形 ER図) の作成法として、以下の 2つを記述しています。

 (1) 命題論理方式 (「情報仕訳」 法ともいう)
 (2) コード 体系方式 (「データ 転記」 法ともいう)

 (1) は、データ の 「意味」 を初見で把握しなければならない コンサルタント 向きの やりかた で、(2) は、データ の 「意味」 を 或る程度 知っている社内 DA (Data Analyst) 向きの やりかた であると本編で述べていますが、最近──ここ数年のあいだ──、私は、セミナー で (1) しか指導しなくなりました。

 その理由は、データ の 「意味」 を正確に把握するために、「文脈 (ひとつの まとまった情報単位)」 を 「解析」 の対象にしたほうがいいと判断したからです。ここで言う 「解析」 とは数学的な意味で使っています。すなわち、証明しなければならない対象 A が存在しているとき、A が成り立つためには、B1 が成り立たなければならないことを示し、さらに、B1 が成り立つためには、B2 が成り立たなければならないことを示すというふうに、以下のように、順次、対象を導出する手順です。

     A → B1 → B2 → ... → Bn.

 そして、A を、終いには、「既知の ことがら」 Bn に帰着する やりかた を 「解析」 と云います。そして、「関係」 を 「関数」 R (x, y) として翻訳すれば、x および y という変項は、関数 R ( ) のなかで付値されて 「意味」 をもつ、ということなので──言い換えれば、「存在する」 ということは、変項になり得ることであって──、指示対象は変動するので、「文の解釈」 から独立して対象を指示できる訳ではないのあって、「(対象の) 指示」 は、それぞれの 「解釈」 を免れる訳ではない、ということ。すなわち、「(対象の) 指示」 は、「枠組み」 の総体を前提にした全体論的な 「『解釈』 の内部 (from inside)」 からしか確定できないということです。関数 R ( ) を ひとつの 「情報」 として考えて、変数 x・y を データ 項目として考えればいいでしょう。この考えかたを私に教えてくれた人物が、ウィトゲンシュタイン氏・クワイン氏・デイヴィドソン氏・レーベンハイム氏・スコーレム氏らです。

 TM では、命題論理方式 (「情報仕訳」 法) を使って、TM の文法に従って、まず、「個体と関係」 を構成します。この作業を 「Tentativ Modeling」 と呼んでいます。そして、いったん構成された構造を、「意味論 (現実的事態との対比において 「(モデル上の個体と現実的事態との) 指示」 を験証して モデル (TMD) を推敲する作業を 「Semantic Proofreading」 と呼んでいます。 □

 



  << もどる HOME すすむ >>
  目次にもどる